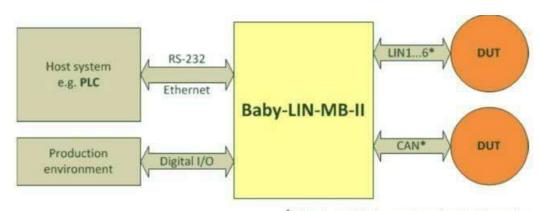
虹科 Baby-LIN-MB-II


用户手册

1. 用途

Baby-LIN-MB-II 是一个可以通过 RS232 或以太网来控制 LIN 或者 CAN 总线的 ECU。并可以选配数据 I/O。

Baby-LIN-MB-II 提供了一系列的 ASCII 码命令,用来与 PLC 或者其它类型的上位机通信。
LIN 或 CAN 总线的通信通过加载一个或多个 SDF 文件到 Baby-LIN-MB-II 中来配置,这些文件保存在 Baby-LIN-MB-II 的内存卡中。

*LIN2...6 and CAN support needs activation code

通过执行一些特定的命令可以加载特定的 SDF 文件, 然后开始 LIN/CAN 总线通信和访问收到的信号或者通过 LIN/CAN 总线发送信号。

Baby-LIN-MB-II 支持 SDF-V2 和 SDF-V3 文件。

按键和 LED 灯说明

Push button PB1 (黑色)

操作:长按(大于4秒)

指示: 连接 U 盘开始固件更新,文件位于 U 盘的子目录 BL-MB-01\update\

操作: 短按 (小于 4 秒)

指示: 写入 ASCII 记录数据到 U 盘里,文件位于 U 盘的子目录 BL-MB-01\LOG\

Push button PB2 (绿色)

操作: 短按 (小于 4 秒)

指示: 通过 U 盘导入 SDF 文件, 文件位于 U 盘的子目录 BL-MB-01\database\

PB1 & PB2 同时按超过 5 秒

系统重启

系统 Led LD1 红灯

指示系统启动问题或者是电源供电失败。

当设备上电启动时, 红灯和绿灯同时点亮,

当 Linux 启动后, LD2(绿色)灯会关闭, LD1(红色)依旧点亮。

接着当应用启动成功, LD2(绿色)灯会点亮, LD1(红色)关闭。

系统 Led LD2 绿灯

系统正常启动后, Led LD2 绿灯常亮

当进行临时操作(导入 SDF 文件, 固件更新, Log 文件导出,) Led LD2 绿灯以 100ms 关闭 100ms 点亮的方式闪烁, 直到操作完成。

如果操作失败, LD1(红色)灯就会点亮 3 秒,接着 Led LD2 绿灯才变为常亮。

总线 Led LD3 红灯/绿灯

用于指示 LIN 通信 1 的通信状态

熄灭---没有 SDF 文件加载 no SDF loaded

绿色闪烁 (500ms 间隔) ---SDF 已加载但是总线无电压。绿

色常亮---表示 SDF 文件加载和有 LIN 电压。

红灯闪烁 (30ms) ---总线错误提示。

2. RS-232命令

RS-232 通信通常通过 PLC 来控制。PLC 发送一个命令,Baby-LIN-MB-II 会开始一个响应的动作,然后会返回一个结果值或者错误代码。

一个命令包含一个字母和一个或者多个参数,这个字母定义了这个命令;参数之间以空格 (0x20) 间隔,每个命令以特征字<CR>结束。

为了缓解识别一个新命令的开始部分,每个命令都有一个冒号字符前缀":"。

所有的命令都以 ASCII 码的形式给出。

数字可以以十进制或者十六进制符号来表达。十六进制的值以后缀 H 来分别。

10 => 十进制的值

10H=> 十六进制的值 => 对应的十进制数值是 16

注意:如果是在电脑上用串口调试工具发送以下命令时,特征字<CR>表示回车键。

2.1 LoadSdf 命令—加载特定的 SDF 文件到 LIN 接口

LoadSdf 命令紧跟着 LIN 接口的编号和文件名字。例如:

Command: :LoadSdf 0 Test0001.sdf < CR > 加载 SDF 文件

Response :0<CR> 返回 0 表示 SDF 文件已经被加载

:@x<CR> 发生错误

2.2 LinStart 命令—对特定的 LIN 接口开始 LIN 仿真

LinStart 命令后面跟着 LIN 接口的编号,开始仿真。有一个可选的参数表达的是可用的调度

表的编号。例如:

Command: :LinStart 0 1 < CR > Response:

:0<CR> 开始仿真

:@x<CR> 发生错误

2.3 LinStop 命令—对特定的 LIN 接口停止 LIN 仿真

LinStop 命令后面跟着 LIN 接口的编号,停止仿真所选编号的 LIN 总线,用于选择 MIF-

LIN.

Command : LinStop 0 < CR >

Response :0<CR> 表示已经结束仿真

2.4 chedule 命令—对特定的 LIN 接口切换调度表

LinSchedule 命令后面跟着 LIN 接口的编号和用于切换的调度表的编号用于选择 MIF-

LIN 。

Command :LinSchedule 0 1 < CR > 切换 MIF-LIN 编号 0 为调度表编号 1

Response :0<CR> 调度表已经切换

Response :@x<CR>响应失败

2.5 SchedMode 命令—设置调度表模式

SchedMode 命令可以选择 3 种调度表操作模式

:SchedMode <通道> <调度表索引> <模式> <CR>

2.5.1 Schedule mode Cyclic: mode=0 (默认模式)

在此模式调度表会持续运行,如果切换到另外一个调度表后,将会立即执行。

2.5.2 Schedule mode Cyclic: mode=1

在此模式调度表会持续运行,如果切换到另外一个调度表后,将会立即执行。

2.5.3 Schedule mode Cyclic: mode=2

在此模式调度表会持续运行,不过只有等待调度表最后一项运行完后才切换 (用指令 LinSchedule) 到另外一个调度表时,意味着调度表里所有的报文帧保证一个顺序执行。

:Schedmode 0 2 1 < CR > 设置 schedule table[2]为 SingleRun 模式

:Schedmode 0 0 0 < CR> 设置 schedule table[0]为 Cyclic 模式

2.6 LinRdSignal 命令—从特定的LIN 接口读取LIN 信号

Command: :LinRdSignal 0 12 < CR > 从 MIF-LIN number 0 读取信号

Response :0···99999<CR> 信号值

Response :@x <CR> 信号读取失败

2.7 LinWrSignal 命令—从写LIN 信号到特定的LIN 接口

LinWrSignal 命令将会写入到有给定索引的信号的参数值的 MIF-LIN 中,只能在仿真节点发布的信号上执行写操作。

写命令有三个参数: 第一个是 LIN 接口号, 第二个是信号索引, 第三个参数是要写入的值。

Command: :LinWrSignal 0 12 16 < CR >

将 16 写入到 MIF-LIN 编号为 0 的信号 12 中

Response :0 < CR > 写信号成功

Response :@x<CR>写信号失败

2.8 LinMstReq 命令—从特定的 LIN 接口发布主机请求

LinMstReq 会发布一个主机请求,从选择的 LIN 接口由 8 个字节给定的 8 个参数。第 10 个参数定义为超时时间(ms),这个时间表示必须在这个时间内接收到响应。在实际的固件版本中,这个参数是不使用或者直接忽略掉的,但是必须给出来。

可选的第 11 个参数定义了响应的从机的号码,将会由从机作为响应发送。通常是 1,在那种情况下第 11 个参数会被忽略掉。

第 11 个参数支持的最大值是 32。

Command: :LinMstReq 0 43H 6H B2H 01H 2H 0H 0H 27H 1000

<CR> 从 MIF-LIN number 0 发布主机请求

Response :0 < CR > 主机请求命令会被执行

Response :@x<CR>主机请求命令失败

2.9 LinSlvReq 命令—从特定的 LIN 接口读取最后一个从机响应的值

LinSlvResp 命令会提取一个值,这个值包括对最后发布的一个主机请求的从机响应。这个参数会详细说明这个响应值的位置和大小。

Command: :LinSlvResp 0 24 32 < CR >

从 MIF-LIN number 0 读取 32 位值 (4 个字节) , 包含在从机响应中 32 位长度中的 第 24 位。

Response :B<CR> 系统正在发送主机请求或者接收从机响应

如果你发布了一个主机请求一"响应的从机的编号",且设置的参数的值大于 1,那么就会有多于 8个字节作为从机响应,这个字节可以使用字节数大于 63来读取,

例如: the command:LinSlvResp 0 64 8 < CR > 会读取第二个从机响应帧的第一个字节。

Response :0...999999999<CR> 来自从机响应的 32 位值

Response :@x <CR> 响应失败

2.10 LinState 命令—读取 LIN 接口电源状态

Command :LinState 0 < CR > 读取 LIN 接口的 LIN 电压状态

Response :0,1<CR>, 0:没有 LIN 电压, 1: LIN 电压正常

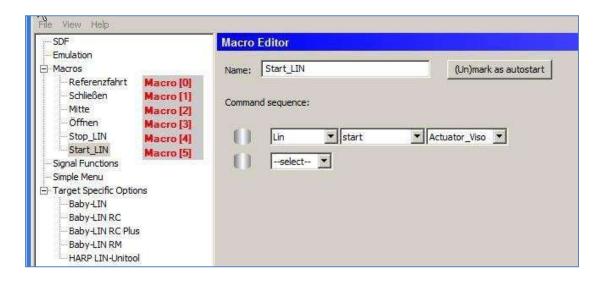
Response :@x<CR>响应失败

2.11 LinRdFrameError 命令一读取来自 LIN 接口的特定报文帧的 ID 的错误

LinRdFrameError 命令只工作在 MIF-LIN 模块的 SW 版本 4.50 或更高。

LinRdFrameError 命令返回选择的 LIN 接口错误代码发生在选择的报文帧发送之后。如果只有一个 MIF-LIN 安装在 Baby-LIN-MB 中,一般都是 number0. 参数会详细说明 LIN 接口的号码和报文帧的 ID。Command:LinRdFrameError 0

10<CR>


读取有 LIN 接口 0 发送的 ID 号是 10 的报文帧的错误代码

Response :0...255 8 位的错误代码, 0 表示无错误

Response :@x<CR>响应失败

2.12 MacroExec 命令—执行 SDF 宏

这个命令从固件版本 1.31 之后可用命令后面的数字 1 那个位置表示的是在 SessionConf 中 定义的宏的顺序,如下图所示:

Command :MacroExec 0 1<CR> 开始第二个定义在 SDF 文件的宏部分的宏

Response :0 开始宏

Response :@x<CR>开始宏失败

2.13 Version 命令—读取 Baby-LIN-MB 的 SW 版本号

Command: :Version < CR >

Response :V.1.21 < CR > 响应出现的是系统的版本

2.14 Diag22 命令—执行诊断服务

这个命令允许在一个特定的节点里执行 UDS 诊断服务 22 (Read Data by Identifier),

首先需要一个 SDF 文件包含诊断帧 (0x3c 和 0x3d) 的调度表,尽管诊断服务 0x22 可以用一个请求检索反馈多个值,不过这里运行后总是读取一个参数。

Command: :Diag22 0 1 10 065eH <CR>

参数: 通道地址, 这里总是为 0

参数: 当前加载的 SDF 文件里的诊断调度表索引

参数: Nad, 节点地址

参数:16 位服务 ID, 在这个例子里为读取 software part number

响应会从多个响应帧里面提取成 ASCII 数据。

比如读取 Software part number (diagnose identifier 0x065e):

电脑指令: DIAG22 0 1 10 065EH <CR> MB 响应: 3C8959537 <CR>

2.15 RTCWrite 命令—设置内部 RTC 时间

RTCWrite 15 6 2014 9 0 45

设置 RTC to 15 June (6 月) 2014, at 9:00:45

提示: 命令对 Baby-LIN-MB-II 没有影响,唯一设置 RTC 的方法是使用以太网设置。

2.16 RTCRead 命令—读取内部 RTC 时间

2.17 ReadByld 命令—运行 LIN 节点配置服务"Read by Identifier"

如下是 LIN 规范里的"Read by Identifier":

Read by identifier

NAD	PCI	SID	D1	D2	D3	D4	D5
NAD	0x06	0xB2	Identifier	Supplier ID LSB	Supplier ID MSB	Function ID LSB	Function ID MSB

ReadByld 会用到虚拟信号@@DiagNodeld,@@DiagSupplierId,

@@DiagFunctionId 和@@ScheduleDiag. 如果虚拟信号没有在 SDF 文件里面定义, 那

么 @@ScheduleDiag 将会设置为 0, 而@@DiagNodeld, @@DiagSupplierId 和

@@DiagFunction Id 将会设置为万能通配值

Property	Wildcard value	
NAD	0x7F	
Supplier ID	0x7FFF	
Function ID	0xFFFF	

如果 SDF 文件有虚拟信号定义,那么虚拟信号的默认值会代替万能通配值, 另外如果需要的话,运行的状态下这些值可以通过 LinWrSignal 命令修改。

这个功能非常适用于多个节点连接的配置。

@@ScheduleDiag 信号需要提前设置好包含 MasterReq 和 SlaveResp 报文(0x3c/0x3d)的调度表,如果@@ScheduleDiag 信号在 SDF 文件没有定义,那么将自动生成并分配为0,那么调度表索引 0 将会使用。

:ReadById 0 <id> <informat> <outformat> <CR>

<id>参数值是 0 至 255, 一些 ID 已经在 LIN 规范里定义了

Supported identifiers using read by identifier request

Identifier	Interpretation	Length of response
0	LIN Product Identification	5 + RSID
1	Serial number	4 + RSID
2 - 31	Reserved	LE:
32 - 63	User defined	User defined
64 - 255	Reserved	-

<informat>参数 允许指定应答的数据如何解析,实际上只有格式 0 才支持。

Informat 0: Read response byte as binary data, 读取响应数据以二进制数据。

<outformat>参数允许定义应答数据让 Baby-LIN-MB-II 以何种方式输出(十进制, ASCII-十 六进制, 字符串),

目前只支持格式 0, 如果您需要添加格式,可以联系我们。

Outformat

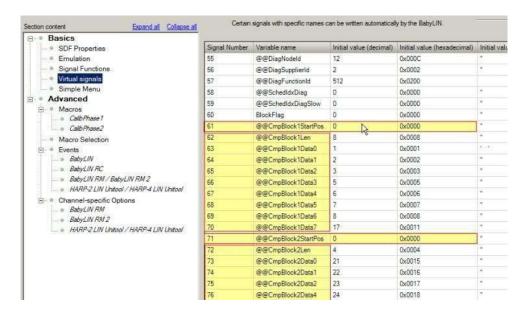
- 0: 输出响应由一位长度和相应长度的 8 位二进制数据组成。
- e.g. 5 33 44 45 98 16
- 1: 从字节中读取 10 进制数据。(暂不支持)
- 2: 输出字节作为字符串 (暂不支持)
- 3: 从字节中输出一个十进制数据 (bcd 解码, LSB 在前) ReadByld 命令需要在固件版本 V.
- 2.11 及以上使用

2.18 ReadByIdCompare 命令—LIN 节点配置服务"Read by Identifier similar"

这个命令允许发出节点配置服务"Read by Identifier similar"到命令"Read- ById",不过从节点的数据反馈值会和 SDF 文件所给的值进行自动对比。

Syntax: :ReadByIdCompare 0 <id> <compareblock number> <CR>

根据节点和所给的 ID, 节点响应可以是一个数字或一个字符串和可以是不同长度。


SDF 文件中特定 ID 需要对比的数据被定义在连续的虚拟信号,以对比块 (compareblock)

为单位,一个 SDF 文件可以支持 8 个对比块。每个对比块的第一个虚拟信号可以命名为:

- $@@CmpBlock 1 Start Pos, \\ @@CmpBlock 2 Start Pos, \\ @@CmpBlock 3 Start Pos, \\ . ,$
- @@CmpBlock8StartPos.

对比块的第一个信号值为 1-8,对比块的第二个数据是对应长度,定义从开始到多长的数据会被对比。

对比块余下的虚拟信号相应的数据是用于对比响应的数据。如下图片展示了 SDF 文件中有两个对应块。

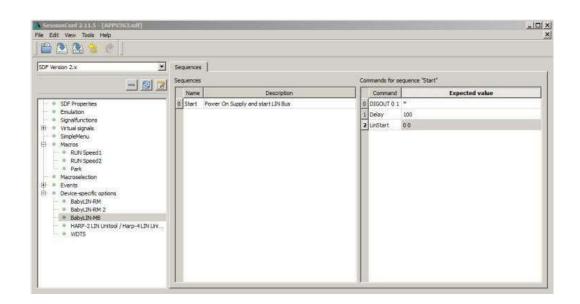
响应为 0, 说明响应数据和对比数据匹配。ReadByIdCmpare 命令需要在固件版本 V. 2.20 及以上使用。

2.19 WaitSignal 命令—等待信号

这个命令将会等待所给的信号等于一个目标值或者超时

:WaitSignal 0 <Signal idx> = <targetvalue> <timeout> <CR> Example: :WaitSignal 0 13= 1 5000 <CR>

这将会等待直到 SDF 文件 LIN 信号索引 13 等于 1 或者直到超时 5000ms.


2.20 SeqRun 命令—顺序运行

:SeqRun 0 <seqid> <CR>

从固件 2.32 版本开始, SeqRun 命令取代 SeqExec 命令。

SeqRun 命令的通道参数默认是为 0,

SeqRun 命令可以顺序执行 SDF 文件定义好的序列,为了创建和保存序列, 请使用 LINworks Session Conf. V.2.11.5 及以上版本的软件。

此设置可通过 SessionConf 软件中的"Device-specific options"选择中完成。上图给出的序列将运行 3 个指令,这个序列可以通过 RS-232 指令触发: SeqRun 0 0 < CR>.

2.21 SeqExec 命令—顺序执行

:SeqExec <seqid> [<returnmode>] <CR>

这个 SeqExec 顺序执行命令和 SeqRun 命令一样,不过它没有通道 ID 参数。如果 return mode 赋值为 1,那么 SeqExec 命令将会反馈回序列中最后一个 指令的数据。如果没有赋值,那么系统默认运行赋值为 0.

2.22 Delay 命令—延时

:Delay <timeout> <CR>

延时的时间以 ms 为单位, 如果当所给的 timeout 时间到了, 那么会反馈:

:0<CR>

2.23 DigOut 命令—数字输出

:DigOut <outputnum> <state> <CR>

这个命令用于控制 2 个数字输出源, 第一个参数:

数字端 Digital port (X9-24/X9-12)

LIN 电源 Lin-Power-Out (X9-22)

第二个参数:

inactive 禁止

1 active 使能 (resource 0: X9-24 ND X9-12 are connected, resource 1: X9-22 has level of VLIN (X9-9)

警告: 有些插件允许输出状态的反转,如果数字输出没有按照预期的运行,那么可以 检查一下当前安装插件的配置变量。

2.24 DigIn 命令—数字输入

:DigIn <inputnum> <CR>

这个命令读取数字输入的输入状态, 读取于 X9-13. 另外这个输入的 GND 引脚在 X9-15。

如果数字输入的激活电压直流 5-28V 范围内,将反馈:1<CR>,否则反馈:0<CR>

2.25 错误响应

如果命令没有被理解,或者参数是无效的,或者特定的错误条件在 LIN 总线端导致一个命令 失败,系统会返回如下的错误代码。

Response: :@0 <CR> 指令成功。

Response: :@1 <CR> 不知道的命令

Response: :@2 < CR > 无效的参数

Response: :@3 <CR> 参数超出范围

Response: :@4 <CR> 参数丢失

Response: :@5 < CR > 命令超时 (不完整的命令)

Response: :@6 <CR> 没有发现文件

Response: :@7 <CR> 加载文件错误

Response: :@8 < CR > SDF 下载到 MIF-LIN 错误

Response: :@9 < CR > 内部 MIF-LIN 操作错误

Response: :@10 < CR > 错误信号查找失败

Response: :@11<CR> 节点超时 (LIN 总线无应答)

Response: :@12<CR> LIN 总线电源丢失

Response :@13<CR> 通道未知或没有激活

Response: :@14<CR> 节点提供的数据无效或未知

Response: :@15 < CR > 由于缺少必要的先决条件而被拒绝

Response: :@16<CR> 应用功能没有在给定的时间内执行

Response: :@17<CR> 指令失败由于 SDF 文件内的设置

Response: :@18 < CR > 无效的信号名称

Response: :@19<CR> 错误发生于 SDF 语法

Response: :@30<CR> 无 SDF 文件加载

Response: :@31<CR> DTL 否定响应

Response: :@32<CR> DTL 处理中

Response: :@33<CR> DTL 无效数据

Response: :@34<CR> DTL 无效响应长度

Response: :@35<CR> 无效 NAD

Response: :@40<CR> 错误密码

Response: :@41<CR> 拒绝访问

Response: :@42 < CR > 访问级别不够

Response: :@50<CR> 指令长度

Response: :@51<CR> 指令 ID

Response: :@60 < CR > 无法检索部分信息

Response: :@61<CR> 部分不能被下载

Response: :@70<CR> 配置变量未找到

Response: :@71<CR> 配置变量不能被设置

Response: :@70<CR> 配置变量不能被接收。

Response: :@80<CR> 不能回复引脚状态

Response: :@81<CR> 无效模式

Response: :@82<CR> 序列号代码无效

Response: :@100-789<CR> 错误序列,比如反馈 100,表示这个步骤返回一个错误。

Response: :@790 < CR > 插件初始化失败。

Response: :@791<CR> 插件配置数据无效。

Response: :@792 < CR > 无法查找命令引用。

Response: :@793 < CR > 无法查找帧

Response: :@794<CR> 诊断调度表错误

Response: :@800 < CR > SeqExec 命令中无效的序列索引

Response: :@801<CR> 序列中的命令解析器错误

Response: :@802 < CR > 序列中未预期的值

Response: :@803 < CR > 插件指令不直接

Response: :@810 < CR > 在 Macro Exec 命令中无效的 Macro 宏索引

Response: :@811<CR> 无效的 Macro 宏, 比如空 Macro。

Response: :@812<CR> Macro 宏操作拒绝

Response: :@840 < CR > 未知模式

Response: :@960 < CR > 节点的 BCD 解码数据出错

Response: :@961 < CR > 无效的对比块 (SDF 文件未定义)

Response: :@962<CR> 对比块不匹配

Response: :@988 < CR > 数组类型缺失参数

Response: :@999<CR> 内存耗尽 (Heap 堆错误)

Response: :@1000 < CR > 内部错误 (1000, 1001, ···)

Response: :@2000 < CR > 主机响应错误

Response: :@2001<CR> 双重命令

Response: :@3001 < CR > PMDM:总线电源打开

Response: :@3002 < CR > PMDM: 总线电源关闭

Response: :@3003<CR> PMDM: flash 初始化

Response: :@3004<CR> PMDM: flash 写

Response: :@3005 < CR > PMDM: flash 读回

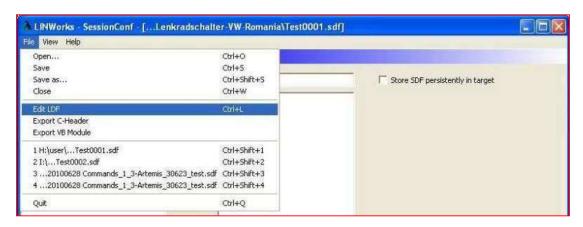
Response: :@3006<CR> PMDM: flash 通道锁止

Response: :@3007<CR> PMDM: flash 通道未准备好

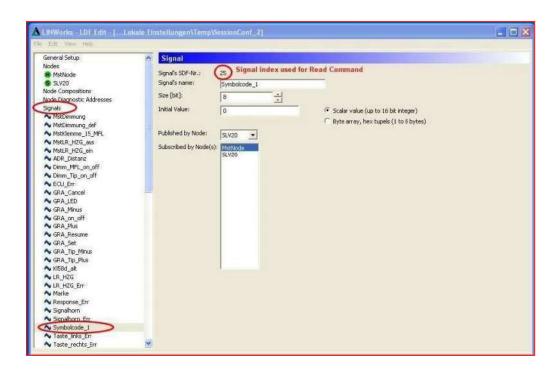
Response: :@3008 < CR > PMDM: flash 通道不可用

Response: :@3009<CR> PMDM: flash 未验证

Response: :@10000 < CR > 插件初始化失败


Response: :@10001<CR> 插件初始化失败两次

Response: :@10002<CR> 插件初始化 RTV 寄存器失败


3. 应用实例

硬件准备: 在使用上位机或者 PLC 发送 RS-232 命令之前, 需要给 Baby-LIN-MB-II 模块供电(18—28V, 一般用 24V),确保 SDF 文件已经拷贝到 Baby-LIN-MB-II 模块中,还有就是保证 Baby-LIN-MB-II 模块与上位机或者 PLC 之间通信正常。

用于读取信号的信号索引可以在 SDF 文件中找到。只使用 LINWorks 软件中的 SessionConf 打开 SDF 文件, 然后再在 File 中选择 Edit LDF 就可以查看定义的信号。

信号属性中选择适当的信号,在右边部分(Signal's SDF-Nr)的第一行显示了用于读和写命令是的索引号码。

如果 Test0001.sdf 文件已经通过 U 盘拷贝到 Baby-LIN-MB-II 中,只需要三个命令就可以 开始通信和读取信号值。

Command :LoadSdf 0 Test0001.sdf<CR>

Hex-Codes: 3a 4c 6f 61 64 53 64 66 20 30 20 54 65 73 74 30 30 31 2e 73

64 66 0D

Response :0<CR> Response "0" => OK

Hex-Codes: 3A 30 0D

Command:LinStart 01<CR>/启动 LIN 总线的调度表 1

Hex-Codes: 3a 4c 69 6e 53 74 61 72 74 20 30 31 0D

Response :0<CR> Response "0" => OK

Hex-Codes: 3A 30 0D

Command:LinRdSignal 0 25<CR> 读取信号索引 25 的值

Hex-Codes: 3a 4c 69 6e 52 64 53 69 67 6e 61 6c 20 30 20 32 35 0D

Response :16<CR> => Signal value 0...65535(16 位)

Hex-Codes 3A 31 36 0D depends on signal index

Command :LinStop 0<CR>停止 LIN 总线通信

Hex-Codes: 3a 4c 69 6e 53 74 6f 70 20 30

Response :0<CR> Response "0" => OK

Hex-Codes: 3A 30 0D

如果是要执行宏才能开启 LIN 总线的话就需要用到 2.12 中的 MacroExec 命令, 具体的操作方式参照 2.12.

4. 硬件连接

电源 (X8) 、LIN 总线 (X5) 和 RS-232 (X7) 的接地之间都是完全隔离的。

4.1 电源 (X8) 的引脚分配

该模块的 X8 端口是供电端口,要求供给 24V 的直流电,上电后 X3 下面的绿色 LED 灯会点亮,但是上电后需要大概一分钟才能稳定下来,稳定之前红色的 LED 灯会闪,然后绿色的 LED 灯会保持点亮的状态。只有在出现错误的时候红色的 LED 灯才会有指示。

4.2 逻辑和 IO (X9) 的引脚分配

X9 是 25 针母头 sub-D 连接端口,

其中引脚 1 和 14 是给设备供电用,如果已经在 X8 供电,这里就不需要再连接。第 1引脚在正面的右上角

SUB- D25 pin num- ber	Pin function		
1	GND	Unit supply for Baby-LIN-MB-II Vin is	
14	Supply	in the range of 8-32 VDC and inter- nal connected with X8	
2	open	optionally used by MIF-LIN	
15	open	optionally used by MIF-LIN	
3	open	optionally used by MIF-LIN	
16	open	optionally used by MIF-LIN	
4	open	optionally used by MIF-LIN	
17	open	optionally used by MIF-LIN	
5	open	optionally used by MIF-LIN	
18	VLIN-detect1	LIN supply detection for LIN1 (typ. connected to LIN node 12 V supply)	
6	VLIN-detect2	LIN supply detection for LIN2 (typ. connected to LIN node 12 V supply)	
19	open	optionally used by MIF-LIN	
7	open	optionally used by MIF-LIN	
20	GND-LIN	GND Connection for LIN1/2	
8	LIN1	optionally used by MIF-LIN	
21	LIN2	optionally used by MIF-LIN	
9	VLIN	Supply for LIN1/2 transceiver (typ. connected to 8-26 VDC supply)	
22	PWR-Switch	Switchable power output with VLIN	
10	High speed CAN-L	Galvanically isolated high speed	
23	High speed CAN-H	Galvanically isolated high speed CAN interface	
11	GND-CAN		
24	Galvanic isolated switch port1	Normally open semiconductor relay, IDC/AC peak = 190mA and VDC/AC	
12	Galvanic isolated switch port2	peak = 33V	
25	GND for digital input	Optocoupler isolated input, 24V ca-	
13	Digital input	pable	

追示: Baby-LIN-MB-II 新版本中,连接 LIN 通信时,X9 需要将 VLIN-detect1(18)也 供电 12V 才能正常工作。

4.3 兼容式连接器

兼容连接器连接在 X9 上后,分出 X5-LIN Bus 和 X6-DIG-IO 数字 IO 端口。不过接入兼容连接器之后,并不是所有的 IO 接口都可以用,具体可以查看 X6 的引脚定义。

4.4 总线 (X5) 的引脚分配

Pin	Pin function	Corresponding PIN on X9 (Sub-D-25)	Connection on old Baby-LIN-MB X5
1	not connected		not connected
6	not connected	11	not connected
2	not connected	10	not connected
7	not connected	23	not connected
3	GND-LIN	20	GND-LIN
8	LIN1	8	LIN
4	not connected	21	not connected
9	V-LIN	9+18	V-LIN
5	not connected		not connected

注意: LIN 总线这一端的电源必须与被控设备的 LIN 总线的电源保持一致,如果控制的是电机,那么这个电源要与电机的电源一样。

4.5 O (X6) 的引脚分配

Pin	Pin function	Corresponding PIN on X9 (Sub-D-25)	Connection on old Baby-LIN-MB X6 (DIO-Version)
1	GND-DI	25	GND-24V
6	not connected		not connected
2	not connected		not connected
7	Digital Out (open Collector)	24	Digital Out 1
3	Digital Input	13	Digital In 1
8	not connected		not connected
4	not connected		not connected
9	not connected		not connected
5	not connected		not connected

4.6 RS-232 (X7) 的引脚分配

Pin number	Pin function	
1	open	
6	open	
2	RS232-TX	
7	open	
3	RS232-RX	
8	open	
4	open	
9	open	
5	GND-RS232	

串口 X7 被初始化为 9600 的波特率, 1 个起始位, 8 个数据位, 1 个停止位, 无奇偶校验。可通过 B 命令修改。

以太网 (X10)

X10 是标准的 10/100 Mbit 以太网接口,可用于配置 Baby-LIN-MB-II,下载 sdf 文件等等配置。详细可查看章节: "7.配置和检测软件: Baby-LIN-MB-Tool"

■ 5. 导入SDF文件

Baby-LIN-MB-II 系统的运行基本上是由 SD 卡内部的 SDF 文件定义的。这些 SDF 文件是在电脑上用 LINWorks 软件创建和准备的,配置好 SDF 文件后,就可以通过 U 盘将 SDF 文件转存到 Baby-LIN-MB 模块中。

对于 U 盘的要求:要求 U 盘必须是 FAT32 或者 FAT16 的系统文件格式,如果是 NTFS格式的,U 盘里面的 SDF 文件将不能正常拷贝到 Baby-LIN-MB 模块中。在将 SDF 文件转存到 Baby-LIN-MB 模块之前,必须先将它拷贝到 U 盘中一个特定的目录下面:\BL-MB-01\database。

也就是说在 U 盘里面新建一个名为 BL-MB-01 的文件夹,再在这个文件夹里面新建一个名为 database 文件夹,将 SDF 文件拷贝到这个文件夹中就可以了。

在 Baby-LIN-MB 的 X3 (USB host) 接口处插上 U 盘,然后按下绿色的按钮,这样保存在 U 盘目录中(\BL-MB-01\database)的 SDF 文件就会自动拷贝到 Baby-LIM-MB 中。在拷贝操作过程中,绿色的 LED 灯会闪烁,完成操作后,绿色的 LED 灯会保持点亮的状态,当所有的正常之后,如果发生了一个错误,红色的 LED 会点亮。

建议:通过以太网也可以加载 SDF 文件,以太网选项为 System/ Database 菜单,通过拖拉的方式就可以加载 SDF 文件。

警告: 如果传输相同名字的 SDF 文件, 那么 USB 里面的 SDF 文件会覆盖之前的文件。 另外, 导入设备后会转化成小写的文件名。 固件 1.27 版本之前存储时,比如"test.sdf" 和"TEST.SDF"都会存储在设备里面, 不过从固件 1.27 版本之后,所有的名称都会保存成小写的格式,所以如果多个 SDF 文件,只会保存小写格式的那个,其他的将会丢失。

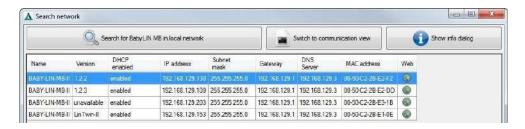
6. 固件更新

Baby-LIN-MB-II 的固件更新在内部的 eMMC 驱动器里,传送到 Baby-LIN-MB-II 的数据也必须拷贝到 U 盘的特定目录下: "\BL-MB-01\update\"。Baby-LIN-MB 固件的数据包含在一个名叫 BLMBUPD.tar 的文件中。

插入 U 盘, 该 U 盘中有"\BL-MB-01\update\BLMBUPD.tar"文件,按下黑色的按钮至少 4 秒,会开始固件更新过程。

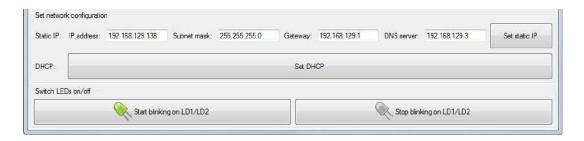
红色和绿色的 LED 交替闪烁也表示更新过程即将开始。

如果在更新过程中发生了错误,红色的 LED 灯会保持点亮 3 秒。如果一切正常,绿色的 LED 灯会保持点亮 3 秒,系统会重启。



重要提示: 使用的 U 盘需要是 FAT 格式, NTFS 和其他格式都不支持。

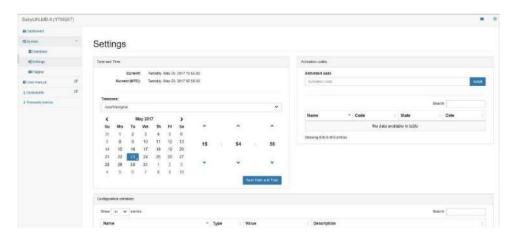
■ 7. 配置和检测软件: Baby-LIN-MB-Tool


BabyLIN-MB-Tool 工具是用于查找、配置和检测 BabyLIN-MB-II 设备的软件。

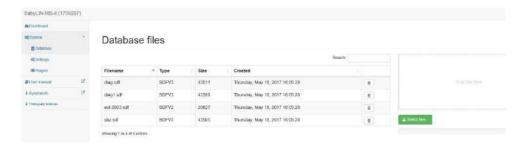
使用固定 IP 连接 BabyLIN-MB-II,首先将网线连接电脑和 BabyLIN-MB-II,然后将电脑设置成和 BabyLIN-MB-II 相同的网关,比如 BabyLIN-MB-II 的 IP 地址为 192.168.129.253,那么就需要将电脑本地连接的 IP 设置成:

IP: 192.168.129.xxx (除了 253) , 子网掩码: 255:255:255:0。

如果点击"Switch to communication view",就会切换到通信查看模式。


为了检测电脑与 Baby-LIN-MB-II 之间的连接是否正常,可以通过点击下方的"start blinking on LD1/LD2",正常情况下,点击后,LD1/LD2 会同时在闪烁。

此外,也可以通过点击图标中的 web 标志 () 在网页中打开查看 Baby-LIN-MB-II


常用菜单: system->settings

右边的 activation code 用于导入激活码, 左边可以修改 MB-II 内部的时间。

常用菜单: system->Datafiles

用于查看,导入和删除 SDF 文件

HongKe Online Acadamy

2020年2月21日, 虹科云课堂首次与大家见面, 带来的第一节《CAN 总线基础之物理层篇》 课程,就得到了各位工程师朋友们的热情支持与参与,当晚观看人数4900+。我们非常感恩, 愿不负支持与鼓励, 致力将虹科云课堂打造成干货知识共享平台。

目前虹科云课堂的全部课程已经超过 200 节, 如下表格是我们汽车相关的部分课程列表。 大家通过微信扫描二维码关注公众号,点击免费课程直接进入观看,全部免费。

汽车以太网课程

智能网联下车载以太网的解决方案 SOME/IP协议介绍 基于CanEasy浅谈XCP TSN/AVB 基于信用点的整形

TSN技术课程

基于TSN的汽车实时数据传输网络解决方案 TSN时间敏感型网络技术综述 以太网流量模型和仿真 基于TSN的智能驾驶汽车E/E架构设计案例分享 IEEE 802.1AS 时间同步机制 TSN技术如何提高下一代汽车以太网的服务质量?

CAN、CAN FD、CAN XL总线课程

CAN总线基础之物理层篇 CAN数据链路层详解篇 CAN FD协议基础 CAN总线一致性测试基本方法 CAN测试软件(PCAN-Explorer6)基本使用方法 CAN测试软件(PCAN-Explorer6)高级功能使用 浅谈CAN总线的最新发展: CAN FD与CAN XL CAN线的各种故障模式波形分析

LIN总线相关课程

汽车LIN总线基本协议概述 汽车LIN总线诊断及节点配置规范 LIN总线一致性测试基本方法 LIN自动化测试软件(LINWorks)基本使用方法 LIN自动化测试软件(LINWorks)高级功能使用 基于CANLIN总线的汽车零部件测试方案

CAN高级应用课程

UDS诊断基础 UDS诊断及ISO27145 基于UDS的ECU刷写 基于PCAN的二次开发方法 CCP标定技术 J1939及国六排放 OBD诊断及应用 (GB3847) BMS电池组仿真测试方案 总线开发的流程及注意事项 车用总线深入解析

汽车测修诊断相关课程

汽车维修诊断大师系列-如何选择示波器 汽车维修诊断大师系列-巧用示波器 汽车维修诊断-振动异响 (NVH) 诊断方案

工业通讯协议基础课程

PROFINET协议基础知识 初识EtherCAT协议 初识CANopen协议 EtherNet/IP协议基础知识 IO-Link: 工业物联网的现场基础 新兴工业级无线技术IO-Link Wireless

智能通讯领域专业的 资源整合及技术服务落地供应商

关于虹科

虹科电子科技有限公司(前身是宏科)成立于1995年,总部位于中国南方经济和文化中心-广州;还在上海、北京、成都、西安、苏州、台湾、香港,韩国和日本设有分公司。

我们是一家高新技术公司,是广东省特批的两高四新、三个一批、专精特新和瞪羚企业,并与全球顶尖公司有多领域的深度技术合作,业务包括工业自动化和数字化、汽车研发测试、自动驾驶等领域: 医药和风电行业等的环境监测; 半导体、轨道交通、航空航天等测试测量方案。

虹科工程师团队致力于为行业客户提供创新产品和解决方案,全力帮助客户成功。

智能互联事业部

虹科是一家在通讯领域,尤其是汽车电子和智能自动化领域拥有超过 15 年经验的高科技公司,致力于为客户提供全方位的一站式智能互联解决方案。多年来,我们与全球行业专家深度合作,成为了行业内领先的通讯技术服务商。我们提供全面的软硬件解决方案,包括【CAN/CAN FD、LIN、车载以太网、TSN、IO-Link/IO-Link wireless、OPC UA、CANopen、PROFINET、EtherNet/IP、EtherCAT】等各类通讯协议的解决方案、测试方案、培训和开发服务等。

我们以满足客户需求为导向,以技术能力为基础,为国内外企业提供最适合的产品和最满意的服务。目前我们服务的客户已经超过 5000 家,我们自主研发的 EOL 测试系统、CCP/XCP 标定和 UDS 诊断服务开发服务以及 TSN 网络验证测试系统等也已经在业内完成超过 1000 次安装和测试。我们的方案覆盖了各行业知名企业,得到了包括蔚来,比亚迪,长城,联影,东芝三菱,安川等多个用户的一致好评。

华东区(上海)销售

高印祺

电话/微信: 136 6024 4187

邮箱: gao.yinqi@intelnect.com

华东区(非上海)销售

林燕芬

电话/微信: 135 1276 7172

邮箱: lin.yanfen@intelnect.com

华南区销售

董欢

电话/微信: 189 2224 3009

邮箱: dong.huan@intelnect.com

华北区销售 张瑞婕

电话/微信: 181 3875 8797

邮箱: zhang.ruijie@intelnect.com

协议开发方案 (全国)

郭泽明

电话/微信: 189 2224 2268

邮箱: guo.zeming@intelnect.com

虹科电子科技有限公司

www.intelnect.com info@intelnect.com

广州市黄埔区开泰大道30号佳都PCI科技园6号楼

T (+86)400-999-3848

各分部: 广州 | 成都 | 上海 | 苏州 | 西安 | 北京 | 台湾 | 香港 | 日本 | 韩国

版本: V1.0 - 22/11/14

