IO-LINK 从机核心模块

目录

— ,	Ì	力能说明	3
<u> </u>	5	外形尺寸	3
三、	ſ	共电电源	3
四、	Ą	更件 IO 信号	4
五、	Ą	更件设计电路	5
	1.	电源设计	5
	2.	硬件复位	6
	3.	UART 电路	7
	4.	SPI 电路	7
	6.	指示灯	8
	5.	IO 电路	8
六、	车	次件开发	9
	1.	数据区定义	9
	2.	指令功能	0
	Te	est 模式使用说明· 错误! 未定义书签。	

一、 功能说明

- 1. IO-LINK 从机模块集成了 IO-LINK 从站的通讯内核。
- 2. IO-LINK 从机模块对用户开放了 2 种串行接口,包括 USART 接口和 SPI 接口,一共用到 MCU 的 UART1 和 UART2 两路串口,UART1 用于用户与 PC 通讯调试,UART2 用于与 IO-LINK 主机的通讯。
- 3. I0-LINK 从机模块具备 16 个引脚的 I0 信号,这 16 个 I0 引脚可以任意设置成 DI 或 D0。

二、 外形尺寸

俯视图

注: 排针使用 1.27mm 间距的单排排针

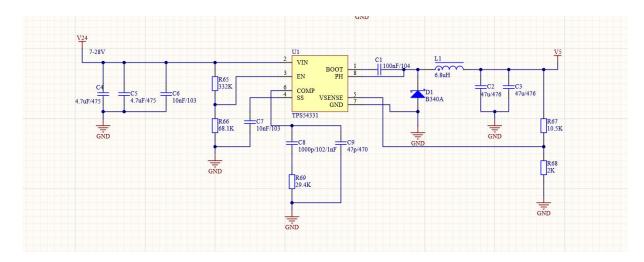
三、 供电电源

IO-LINK 从机模块由 JP4 的 VIN 和 GND 引脚负责供电, VIN 为 24V。 24V 经过 TPS54331 降压电路,降压至 3V3 供单片机使用,核心板 24V 总电流约 17mA。

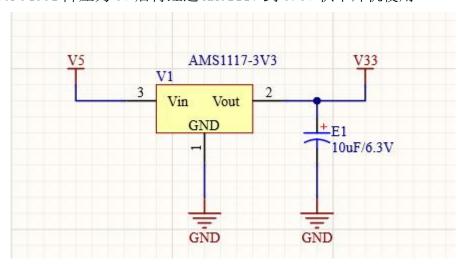
四、 硬件 IO 信号

序号	所属插针	引脚名称	I0 信号功能
1	JP1	I01	IO 信号 1
2	JP2	102	IO 信号 2
3	JP3	103	IO 信号 3
4	JP4	I04	IO 信号 4
5	JP5	I05	IO 信号 5
6	JP6	106	I0 信号 6
7	JP7	107	IO 信号 7
8	JP8	108	IO 信号 8
9	JP9	109	IO 信号 9
10	JP10	I010	I0 信号 10
11	JP11	I011	I0 信号 11
12	JP12	I012	I0 信号 12
13	JP13	I013	I0 信号 13
14	JP14	I014	I0 信号 14
15	JP15	I015	I0 信号 15
16	JP16	I016	I0 信号 16
17	16P 接插件	I/Q	IO-Link 数据收发
18	16P 接插件	NRST	复位
19	16P 接插件	SPI_CLK	串行时钟
20	16P 接插件	SPI_S0	主机输入从机输出
21	16P 接插件	SPI_SI	主机输出从机输入
22	16P 接插件	SPI_CS	从机片选使能

23	U1	VIN	供电电源 24V
24	U1	GND	供电电源 OV
25	U1	GND	供电电源 OV
26	U1	PA9_TXD	UART1 发送
27	U1	PA10_RXD	UART1 接收
28	U1	V3. 3	电源 3.3V
29	JP17	V3. 3	电源 3.3V
30	JP17	SWDAT	CMD +字 口
31	JP17	SWCLK	- SWD 接口
32	JP17	GND	电源 0V

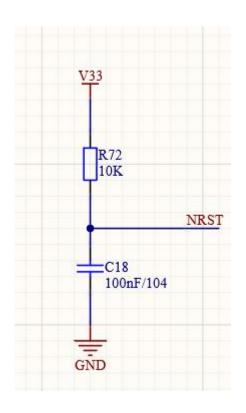

五、 硬件设计电路

1. 电源设计


IO-LINK 从机模块需要由用户提供 24V 直流电源。 电源连接至 IO-LINK 从机模块的下列引脚:

- 1) JP4的1脚: VIN
- 2) JP4的2/3脚: GND

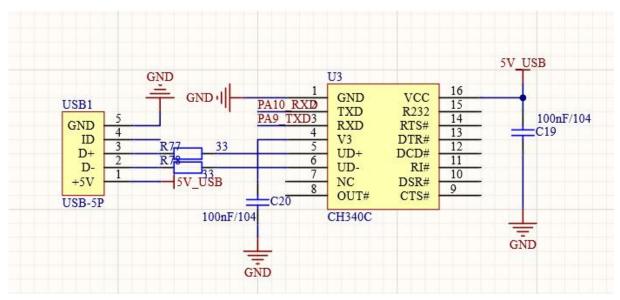
TPS54331 降压电路见下图:



24V 经 TSP54331 降压为 5v 后再经过 AMS1117 到 3. 3V 供单片机使用

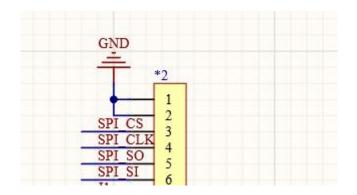
2. 硬件复位

IO-LINK 从机模块提供了一个复位引脚(由 JP3 排针引出),使得用户可以控制 IO-LINK 从机模块是否开始工作。该复位信号直接连通至 STM32F103 的复位引脚,低电平时芯片处于复位状态。

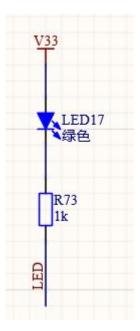


3. UART 电路

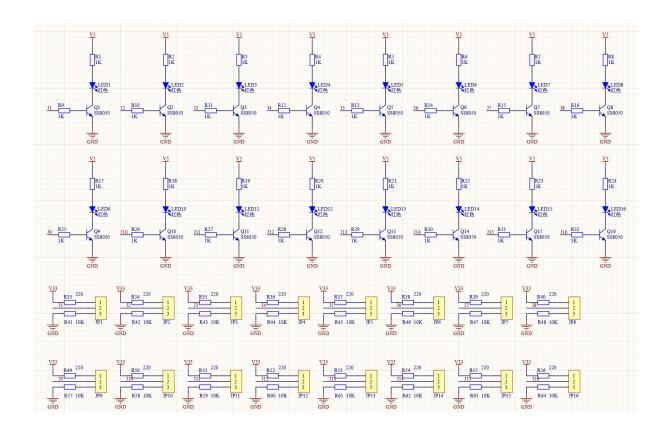
UART1由 JP4 排针引出


PA9_TXD 信号应连接到用户 MCU 的接收信号;

PA10_RXD 信号应连接到用户 MCU 的发送信号。


4. SPI 电路

SPI 有 4 根信号线组成,由 JP5 排针引出,与用户 MCU 定义相同的信号彼此连接。


5. 指示灯

IO-LINK 从机模块上有 1 个指示灯,通过硬件引脚 LED 读取 IO-LINK 从机模块的通讯状态。

6. IO 电路

- 1) IO-LINK 从机模块最大支持 16 个开关量信号的输入或输出。
- 2) IO 通过排针与底板连接由 BZT 稳压二极管进行限流保护。

六、 软件开发

1. 数据区定义

根据功能的不同,将数据区划分为3个区域,分别是:下发数据区、上传数据区、 设备信息参数区。

1.1 上传数据区(最大10字节)

Address	Name	Size	Definition	Default	Access
0	PDIN_DATAO	1 byte	上传到主机的数据	0	R/W
1	PDIN_DATA1	1 byte	上传到主机的数据	0	R/W
•••				0	R/W
8	PDIN_DATA8	1 byte	上传到主机的数据	0	R/W
9	PDIN_DATA9	1 byte	上传到主机的数据	0	R/W

1.2 下发数据区(最大10字节)

0	PDOUT_DATAO	1 byte	主机下发的数据	0	R
1	PDOUT_DATA1	1 byte	主机下发的数据	0	R
•••				0	R
8	PDOUT_DATA8	1 byte	主机下发的数据	0	R
9	PDOUT_DATA9	1 byte	主机下发的数据	0	R

1.3 设备参数区(共10字节)(发送数据包时注意将地址转换成16进制)

Address	Name	Size	Definition	Default	Access
20	USE_COMM_MODE	1 byte	通信模式	0x03	RO
21	USE_UART_BAUDRATE	1 byte	UART 通信波特率	0x02	RO
22	USE_CONST_MINCYCLE	1 byte	数据通信周期 (ms)	0x00	R/W
23	V_userPar1	1 byte	用户参数空间1	0x00	R/W
24	V_userPar2	1 byte	用户参数空间 2	0x00	R/W
25	V_userPar3	1 byte	用户参数空间3	0x00	R/W
26	V_userPar4	1 byte	用户参数空间 4	0x00	R/W
27	V_userPar5	1 byte	用户参数空间 5	0x00	R/W
28	V_userPar6	1 byte	用户参数空间 6	0x00	R/W

2. 指令功能

- 1) 支持 UART 通讯, 通讯报文相同;
- 2) CRC 校验算法的参数模型选用 CRC-8/ROHC x8+x2+x+1。

2.1 功能码

功能码	功能
0x01	写入 PDIN 空间
0x02	读取 PDIN
0x03	读取 PDOUT 空间
0x06	写入用户参数
0x07	读取设备参数

2.2 参数选项含义

① USE COMM MODE: 设备通信模式选择

只有 0x03 模式, 默认值为 0x03。

当 USE COMM MODE == 0x03 时,设备通信模式为 UART。

*Test 模式下 USE_COMM_MODE 详见 Test 模式使用说明

②USE_UART_BAUDRATE: UART 通信波特率

共有3种波特率可选,默认波特率为0x01即9600。

USE_UART_BAUDRATE	UART 通信波特率
0x00	4800
0x01	9600
0x02	115200
0x03	203400

USE_CONST_MINCYCLE: 数据通信周期

以 ms 为单位,数值范围 $1^{\sim}132$ 。默认值为 5ms。

2.3 通信协议格式

用户发送格式:

帧头 1	帧头 2	功能码	空间地址	数据长度	数据内容	CRC
(1 byte)	(1 byte)	(1 byte)	(1byte)	(1 byte)	(N bytes)	(1 byte)
0x5A	0xA5	OxXX	OxXX	OxXX	低地址字	OxXX
					节在前	

功能码为读设备信息或恢复设备出厂设置时,不需要地址、数据长度、数据内容等内容; 功能码为写 PDIN 和写设备参数时,才需要提供数据内容;

数据长度在读或写数据时都需要提供;

CRC 校验从帧头 1 开始计算

设备应答格式:

帧头1	帧头2	应答功能码	错误码	数据长度	数据内容	CRC
(1 byte)	(1 byte)	(1 byte)	(1byte)	(1 byte)	(N bytes)	(1 byte)
0x5A	0xA5	原功能码	OxXX	OxXX	低地址字	OxXX
					节在前	

设备应答应该也是按照数据帧格式进行封装后发送 应答功能码将原本功能码最高位置 1

具体帧格式为: 帧头 1 | 帧头 2 | 功能码 | 错误码 | 数据长度 | 数据内容 | CRC 如果没有数据需要反馈,则将数据长度置为 0,然后去掉数据内容这个部分错误码含义详见 2.5 错误码集。

2.4 指令范例

写入 PDIN 空间

(空间地址 + 数据长度) <= (USE PDIN BYTES - 1)

USE PDIN BYTES 为程序定义的长度。本例程定义该长度为 10

将3个字节的0xFF,0xEF,0x55数据写入以空间地址0为首地址的存储区。

用户发送:

帧头 1	帧头 2	功能码	空间	数据	数据 0	数据 1	数据 2	CRC
(1 byte)	(1 byte)	(1 byte)	地址	长度	(1 byte)	(1 byte)	(1 byte)	(1 byte)
			(1byte)	(1 byte)				
0x5A	0xA5	0x01	0x00	0x03	0xFF	0xEF	0x55	0x42

设备应答:

帧头 1	帧头 2	功能码	空间	数据	错误	CRC
(1 byte)	(1 byte)	(1 byte)	地址	长度	码	(1 byte)
			(1byte)	(1 byte)	(1 byte)	
0x5A	0xA5	0x01	0x00	0x01	0x00	0xC3

读取 PDIN/PDOUT 空间数据

(空间地址 + 数据长度) <= (USE PDIN BYTES - 1)

USE PDIN BYTES 为程序定义的长度。该例程定义长度为 10。

读取 PDIN 以空间地址为 0 首地址的 3 个字节数据。

以空间地址 00 为首地址的 3 个字节数据为 0xFF, 0xEF, 0x55。

用户发送:

帧头 1

(1 byte)	(1 byte)	(1 byte)	(1byte)	(1 byte)	(1 byte)
0x5A	0xA5	0x02	0x00	0x03	0xE6

设备应答:

帧头 1	帧头 2	功能码	错误码	数据	数据 0	数据 1	数据 2	CRC
(1 byte)	(1 byte)	(1 byte)	(1 byte)	长度	(1 byte)	(1 byte)	(1 byte)	(1 byte)
				(1 byte)				
0x5A	0xA5	0x02	0x00	0x03	0xFF	0xEF	0x55	0x1B

③读取 PDOUT 空间数据

(空间地址 + 数据长度) <= (USE_PDOUT_BYTES - 1)

USE_PDOUT_BYTES 为程序定义的长度。本例程定义该长度均为10

读取 PDOUT 以空间地址为 0 首地址的 3 个字节数据。

以空间地址 00 为首地址的 1 个字节数据为 OxBC、OxCD、OxDF。

用户发送:

帧头1	帧头 2	功能码	空间地址	数据长度	CRC
(1 byte)	(1 byte)	(1 byte)	(1byte)	(1 byte)	(1 byte)
0x5A	0xA5	0x03	0x00	0x03	0x36

设备应答:

帧头1	帧头 2	功能码	错误码	数据	数据 0	数据 1	数据 2	CRC
(1 byte)	(1 byte)	(1 byte)	(1 byte)	长度	(1 byte)	(1 byte)	(1 byte)	(1 byte)
				(1 byte)				
0x5A	0xA5	0x03	0x00	0x03	OXBC	<mark>0xCD</mark>	<mark>0xDF</mark>	0x0B

写入设备参数

写入设备用户参数空间1为 0x11。

用户发送:

帧头 1	帧头 2	功能码	空间地址	数据长度	数据 0	CRC
(1 byte)						
0x5A	0xA5	0x06	0x17	0x01	0x11	0x91

设备应答:

帧	失1	帧头 2	功能码	空间地址	数据长度	错误码	CRC
---	----	------	-----	------	------	-----	-----

| (1 byte) |
|----------|----------|----------|----------|----------|----------|----------|
| 0x5A | 0xA5 | 0x06 | 0x17 | 0x01 | 0x00 | 0x6E |

写入设备用户参数空间 2、3 为 0x22、0x33。

用户发送:

帧头 1	帧头 2	功能码	空间地址	数据长度	数据 0	数据 1	CRC
(1 byte)							
0x5A	0xA5	0x06	0x18	0x02	0x22	0x33	0xC2

设备应答:

帧头 1	帧头 2	功能码	空间地址	数据长度	错误码	CRC
(1 byte)						
0x5A	0xA5	0x06	0x18	0x01	0x00	0x2A

⑤读取系统参数

系统当前工作模式为模式 3(0x03),通信波特率为 115200(0x02); 起始地址为 0x14 用户发送:

帧头1	帧头 2	功能码	空间地址	数据长度	CRC	
(1 byte)	(1 byte)	(1 byte)	(1byte)	(1 byte)	(1 byte)	
0x5A	0xA5	0x07	0x14	0x02	0x05	

设备应答:

帧头1	帧头 2	功能码	空间地址	数据	数据 0	数据1	CRC
(1	(1	(1	(1	长度	(1	(1	(1
byte)	byte)	byte)	byte)	(1	byte)	byte)	byte)
				byte)			
0x5A	0xA5	0x07	0x14	0x02	0x03	0x02	0x4c

2.5 错误码集

错误码	定义		
0x00	正确执行		
0x01	功能码错误		

0x02	空间地址错误		
0x03	数据超出限定范围		
0x04	校验码错误		